طراحی مدل پیش بینی ورشکستگی شرکت ها به وسیله شبکه های عصبی فازی (مطالعه موردی:شرکت های بورس اوراق بهادار تهران)
Authors
Abstract:
در این مقاله به منظور پیش بینی درصد ورشکستگی شرکت های بورسی از مدلهای شبکه عصبی فازی استفاده گردیده که توانایی کار در محیط پویا و غیر قطعی را امکان پذیر می سازد. در این میان با استفاده از منطق فازی متغییر های مختلف کلامی به منظور تعریف هر شاخص مشخص گردیده است و با ایجاد توابع عضویت هر کدام با استفاده شبکه عصبی به ایجاد یک سیستم یادگیرنده اقدام شده است. از میان مدل های مختلف شبکه عصبی،شبکه پرسیترون چند لایه پیش خور، با قانون یادگیری پس انتشار خطا انتخاب شده است. در اینجا از چهار شبکه عصبی فازی استفاده شده است. بدین منظور ابتدا پارامترهای مؤثر بر ورشکستگی شناسایی و سپس متغیرهای نهایی در سه دسته اصلی طبقه بندی و به عنوان ورودی های شبکه های عصبی فازی نقدینگی، اهرمی و بازار در نظر گرفته شده است . و سپس خروجی های شبکه های عصبی فازی نقدینگی، اهرمی و بازار به عنوان ورودی های شبکه عصبی فازی پیش بینی ورشکستگی شرکت ها وارد می گردد و خروجی آن احتمال ورشکستگی شرکت های داروسازی بورس را نمایش می دهد. عملکرد شبکه های عصبی فازی در محیط مطلب، سیستم استنتاج فازی سوگینو و توابع عضویت جی بل مورد ارزیابی قرار گرفته است. نتیجه بدست آمده از این مقاله یک مدل پیش بینی بهینه با کمترین مقدار خطا را ارایه داده است
similar resources
ارائه مدل ریاضی پیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران
در این مقاله پنج مدل مهم پیشبینی ورشکستگی را مطالعه و از میان متغیرهای پنج مدل، مدل بازطراحی شده پیشبینی ورشکستگی را ارائه میکنیم که دربرگیرنده هشت متغیر میباشد. مسأله اصلی در این تحقیق این است که با بررسی و تحلیل صورتهای مالی شرکتهای پذیرفته شده در بورس اوراق بهادار تهران بتوانیم مدلی برای پیشبینی ورشکستگی شرکتها ارائه نماییم. به منظور طراحی مدل، از اطلاعات دو گروه از شرکتهای پذیرفت...
full textپیش بینی ورشکستگی شرکت های پذیرفته شده در سازمان بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی
آگاهی از وضعیت مالی شرکت های بازار سرمایه همیشه یکی از دغدغه های سهامداران و تحلیلگران اقتصادی است؛ از این رو تحلیل گران و محقیق بازار های مالی همیشه به دنبال روش هایی برای پیش بینی شرایط آتی شرکت های حاضر در بازار سرمایه بودند. تحقیق پیش رو نیز به دنبال ایجاد مدلی برای پیش بینی ورشکستگی شرکت های حاضر در بازار بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی است. در این تحقیق از نسبت های مالی...
full textپیش بینی ورشکستگی مالی شرکت های بورس اوراق بهادار تهران با استفاده از شبکههای عصبی مصنوعی
هدف اصلی این مقاله پیشبینی ورشکستگی مالی شرکتها در بورس اوراق بهادار تهران به وسیلهی شبکههای عصبی مصنوعی است. مقادیر میانگین مربوط به نسبتهای مالی کلیدی در پژوهشهای صورت گرفته در پیشینه موضوع بهعنوان ورودی شبکههای عصبی انتخاب شدهاند. شبکه عصبی بهکار گرفته شده در این مقاله از نوع پرسپترون چند لایه است که به روش الگوریتم پس انتشار خطا آموزش دیدهاند و شامل شبکه عصبی پیشخور سه لایه با ت...
full textپیش بینی قیمت سهام شرکت های بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی
پیشبینی تغییر قیمت سهام به عنوان یک فعالیت چالشانگیز در پیشبینی سریهای زمانی مالی در نظر گرفته میشود. یک پیشبینی صحیح از تغییر قیمت سهام میتواند سود زیادی را برای سرمایهگذاران به بار آورد. با توجه به پیچیدگی دادههای بازار بورس، توسعه مدلهای کارآمد برای پیشبینی بسیار دشوار است. در این پژوهش، مدلی برای پیشبینی قیمت سهام شرکتهای بورس اوراق بهادار تهران با بکارگیری دادههای درونزا...
full textارائه مدل پیش بینی شاخص کل قیمت سهام با رویکرد شبکه های عصبی (مطالعه موردی: بورس اوراق بهادار تهران)
هدف تحقیق حاضر ارائه مدل پیشبینی شاخص قیمت سهام در بورس اوراق بهادار با استفاده از شبکههای عصبی مصنوعی است. بر این اساس، شاخص صنعت، شاخص مالی و شاخص بازده نقدی به صورت سالانه به عنوان متغیرهای ورودی (مستقل) طرح شد. برای ارزیابی مدل شبکه عصبی از طرح MLP با الگوریتم آموزش پس انتشار و مدل چند عاملی بهره گرفته شده است. نتایج نشان میدهد که مدل شبکه عصبی پیشنهادی، توانایی بالایی در پیشبینی شاخص ...
full textMy Resources
Journal title
volume 4 issue 13
pages 51- 72
publication date 2013-12-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023